Diketahuipanjang jari-jari lingkaran yang berpusat di O adalah 8 cm. Jika jarak dari pusat lingkaran ke titik P adalah 17 cm, maka luas layang-layang ORPQ adalah SD Matematika Bahasa Indonesia IPA Terpadu Penjaskes PPKN IPS Terpadu Seni Agama Bahasa Daerah Padagambar diatas, terdapat sebuah segitiga ABC dengan dengan sisi a,b, dan c. Ada lingkaran luar yang berpusat di titik O yang mengitari segitiga tersebut. OA, OB, OC. dan OD masing-masing adalah jari-jari lingkaran luar yang akan kita cari rumusnya. Top10: Intisari Matematika : Buku Pintar Para Juara (Untuk Kelas 7, 8, 9 Berikut rumus luas lingkaran dihitung dengan menggunakan jari-jari [r], diameter [d], keliling [k], hingga luas lingkaran. 1. Jari-jari lingkaran; Rumus Luas Lingkaran; Rumus Keliling Lingkaran; Sudut Pusat dan Keliling Lingkaran; Video yang berhubungan; Video yang Luasjuring AOB luas juring OBC 4 5. Panjang Busur CD b. Pada lingkaran O untuk menghitung panjang busur AB adalah. Luar Juring AOB c. Perhatikan gambar dibawah ini. 02022019 Panjang jari-jari lingkaran 21 cm. 06022021 Perhatikan Gambar di atas. Pilihlah satu jawaban yang paling tepat 1. Luas juring AOB adalah cdots cdot A. Perhatikanlayang-layang garis singgung pada lingkaran yang berpusat di titik C berikut. Jika jari-jari lingkaran 7 cm dan panjang CD=25 cm, tentukan : a. panjang AD b. luas ACD c. luas segiem 11SMA. Matematika. GEOMETRI ANALITIK. Persamaan setengah lingkaran yang berpusat di O (0,0) dinyatakan dengan y=akar (a-x^2). Nilai a merupakan salah satu akar persamaan x^2-3x-4=0 . Berapakah panjang jari-jari lingkaran tersebut? Persamaan Lingkaran. Persamaan Lingkaran dan Irisan Dua Lingkaran. GEOMETRI ANALITIK. . A. Materi Prasyarat Dalam menentukan persamaan lingkaran, kita perlu mengetahui beberapa teori berikut ini Jarak titik $Ax_A,y_A$ terhadap titik $Bx_B,y_B$ adalah $AB=\sqrt{x_B-x_A^2+y_B-y_A^2}$. Jarak titik $x_1,y_1$ ke garis $ax+by+c=0$ adalah $r=\left \frac{ax_1+by_1+c}{\sqrt{a^2+b^2}} \right$. Jika titik $Ax_A,y_A$ dan titik $Bx_B,y_B$, maka titik tengah ruas garis AB adalah $\left \frac{x_A+x_B}{2},\frac{y_A+y_B}{2} \right$. B. Definisi Lingkaran Lingkaran adalah tempat kedudukan titik-titik yang berjarak sama jari-jari terhadap sebuah titik tertentu titik pusat. C. Persamaan Lingkaran dengan Pusat $O0,0$ dan Jari-jari r Perhatikan gambar berikut ini! Titik T terletak pada lingkaran yang berpusat di titik $O0,0$ dan jari-jari $r$. Berdasarkan definisi, tempat kedudukan titik $Tx,y$ adalah $\{Tx,yOT=r\}$; $OT$ adalah jarak titik $O0,0$ ke titik $Tx,y$, maka $\{Tx,y\sqrt{x-0^2+y-o^2=r}\}$ $\{Tx,y\sqrt{x^2+y^2=r}\}$ $\{Tx,yx^2+y^2=r^2\}$Jadi, persamaan lingkaran dengan pusat $O0,0$ dan jari-jari $r$ adalah $x^2+y^2=r^2$ Contoh 1. Tentukan persamaan lingkaran dengan pusat $O0,0$ dan jari-jari 6. Penyelesaian $\begin{align}x^2+y^2 &= r^2 \\ x^2+y^2 &= 6^2 \\ x^2+y^2 &= 36 \end{align}$ Contoh 2. Diketahui lingkaran dengan titik pusat $O0,0$ dan melalui titik $3,-2$. Tentukan jari-jari lingkaran dan persamaannya. Penyelesaian Persamaan lingkaran dengan pusat O0,0 adalah $x^2+y^2=r^2$ Melalui titik $3,-2=x,y$, substitusi ke persaman maka $\begin{align}x^2+y^2 &= r^2 \\ 3^2+-2^2 &= r^2 \\ 9+4 &= r^2 \\ r^2 &= 13 \\ r &= \sqrt{13} \end{align}$ Persamaan lingkaran $x^2+y^2=r^2$ $x^2+y^2=13$ Contoh 3. Tentukan tempat kedudukan titik $Px,y$ yang memenuhi $\{Px,yPA=2PB\}$ jika $A0,8$ dan $B0,2$. Penyelesaian $\{Px,yPA=2PB\}$ $\{Px,yPA^2= $\left\{ Px,yx_P-x_A^2+y_P-y_A^2=4\left[ x_P-x_B^2+y_P-y_B^2 \right] \right\}$ $\left\{ Px,yx-0^2+y-8^2=4\left[ x-0^2+y-2^2 \right] \right\}$ $\left\{ Px,yx^2+y^2-16y+64=4\left[ x^2+y^2-4y+4 \right] \right\}$ $\left\{ Px,yx^2+y^2-16y+64=4x^2+4y^2-16y+16 \right\}$ $\left\{ Px,y-3x^2-3y^2=-48 \right\}$ $\left\{ Px,yx^2+y^2=48 \right\}$ Contoh 4. Tentukan persamaan lingkaran yang berdiameter ruas garis AB dengan $A-3,2$ dan $B3,-2$. Penyelesaian AB adalah diameter lingkaran maka $\begin{align}d &= AB \\ &= \sqrt{x_B-x_A^2+y_B-y_A^2} \\ &= \sqrt{3+3^2+-2-2^2} \\ &= \sqrt{36+16} \\ &= \sqrt{52} \\ d &= 2\sqrt{13} \end{align}$ Jari-jari lingkaran adalah $\begin{align}r &= \frac{1}{2}d \\ &= \frac{1}{2}.4\sqrt{13} \\ r &= \sqrt{13} \end{align}$ Titik pusat lingkaran adalah titik tengah ruas garis AB yaitu $\left \frac{x_A+x_B}{2},\frac{y_A+y_B}{2} \right=\left \frac{-3+3}{2},\frac{2-2}{2} \right=0,0$ Jadi, persamaan lingkaran dengan pusat $0,0$ dan jari-jari $r=\sqrt{13}$ adalah $x^2+y^2=r^2$ $x^2+y^2=\left \sqrt{13} \right^2$ $x^2+y^2=13$ Contoh 5. Tentukan persamaan lingkaran yang berpusat di $O0,0$ dan menyinggung garis $4x-3y-25=0$. Penyelesaian Perhatikan gambar berikut! Dari gambar diperoleh bahwa jari-jari lingkaran adalah jarak titik $O0,0\equiv x_1,y_1$ ke garis $4x-3y-25=0\equiv ax+by+c=0$ maka $\begin{align}r &= \left \frac{ax_1+by_1+c}{\sqrt{a^2+b^2}} \right \\ &= \left \frac{ \right \\ &= \left \frac{-25}{\sqrt{16+9}} \right \\ &= \left \frac{-25}{\sqrt{25}} \right \\ &= \left \frac{-25}{5} \right \\ &= \left -5 \right \\ r &= 5 \end{align}$ Jadi, persamaan lingkaran dengan pusat $O0,0$ dan jari-jari $r=5$ adalah $x^2+y^2=r^2$ $x^2+y^2=5^2$ $x^2+y^2=25$ D. Soal Latihan Tentukan tempat kedudukan titik $Rx,y$ sehingga $\left\{ Tx,yRA=3RB \right\}$ jika $A9,0$ dan $B1,0$. Tentukan persamaan lingkaran dengan pusat $O0,0$ dan berjari-jari $2\sqrt{5}$. Tentukan persamaan lingkaran yang berdiameter ruas garis AB dengan $A1,-2$ dan $B-1,2$. Tentukan persamaan lingkaran dengan pusat $O0,0$ dan menyinggung garis $5x+12y-60=0$. Persamaan lingkaran yang sepusat konsentris dengan lingkaran $2x^2+2y^2=100$, dan jari-jarinya dua kali jari-jari lingkaran tersebut. Subscribe and Follow Our Channel

panjang jari jari lingkaran yang berpusat di o adalah 9